Feature Correlation and Importance Analysis for Heart Attack Prediction

Authors

DOI:

https://doi.org/10.17010/ijcs/2025/v10/i4/175750

Keywords:

Feature Importance, Heart Attack Dataset, Heart Attack Prediction, Machine Learning, Statistical Analysis.
Publication Chronology: Paper Submission Date : July 2, 2025 ; Paper sent back for Revision : July 10, 2025 ; Paper Acceptance Date : July 14, 2025 ; Paper Published Online : August 5, 2025

Abstract

Cardiovascular diseases are a leading cause of global mortality, with heart attacks being a major contributor. Early detection and accurate risk evaluation are essential for reducing adverse outcomes. This study analysed a publicly available heart attack dataset to identify significant predictors of heart attack. We examined relationships between the target variable (heart attack/no heart attack) and clinical features. The findings offered insights for developing accurate and interpretable predictive models, supporting early diagnosis and improved clinical decision-making.

Downloads

Download data is not yet available.

Published

2025-08-05

How to Cite

Negi, P., & Bisht, M. K. (2025). Feature Correlation and Importance Analysis for Heart Attack Prediction. Indian Journal of Computer Science, 10(4), 34–42. https://doi.org/10.17010/ijcs/2025/v10/i4/175750

References

[1] World Health Organization, “Cardiovascular diseases (CVDs),” Fact sheet, 2025. [Online]. Available:https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds%29

[2] M. M. Ahsan and Z. Siddique,“Machine learning-based heart disease diagnosis: A systematic review,” Artif. Intell. Medicine, vol. 128, Art. no.102289, Jun. 2022, doi: 10.1016/j.artmed.2022.102289.

[3] R. Kumar, S. Garg, R. Kaur, M. G. M. Johar, P. Kumar, A. M. Hadi, S. A. Hasson, and J. Lozanovic, “A comprehensive review of machine learning for heart disease prediction: : Challenges, trends, ethical considerations, and future directions,” Frontiers Art.Intell., vol. 8, pp. 1–15, 2025.[Online]. Available: https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1583459/full

[4] R Gupta, V. P. Gupta, M. Sarna, S. Bhatnagar, J. Thanvi, V. Sharma, A. K. Singh, J. B. Gupta, and V. Kaul, “Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2,”Indian Heart J.,vol. 54, no. 1, pp. 59–66, 2002.

[5] C. Krittanawong, H. Zhang, Z. Wang, M. Aydar, and T. Kitai, “Artificial Intelligence in Precision Cardiovascular Medicine,” J. Am. Coll. Cardiol., vol. 69, no. 21, pp. 2657–2664, May 2017, doi: 10.1016/j.jacc.2017.03.571.

[6] F. Shishehbori and Z. Awan, “Enhancing cardiovascular disease risk prediction with machine learning models,” Feb.2024, doi: 10.48550/arXiv.2401.17328.

[7] L. Breiman,“Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

[8] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

[9] M. Ennab, R. J. Chen, and P. Zhao, “Enhancing interpretability and accuracy of AI models in healthcare: A comprehensive review on challenges and future directions,” Front. Robot. AI, vol. 11, p. 1444763, Nov. 2024, doi: 10.3389/frobt.2024.1444763.

[10] S. Lundberg and S. Lee, “A unified approach to interpreting model predictions,” Advances Neural Inform. Process. System, vol. 30, pp. 4765–4774, 2017. doi: 10.48550/arXiv.1705.07874.

[11] S. Vyshnya, R. Epperson, F. Giuste, W. Shi, A. Hornback, and M. D. Wang, “Optimized clinical feature analysis for improved cardiovascular disease risk screening,” IEEE Open J. Eng. Med. Biol., vol. 5, pp. 816–827, Jan. 2024, doi: 10.1109/OJEMB.2023.3347479.

[12] A. Moore and M. Bell, “XGBoost, a novel explainable AI technique, in the prediction of myocardial infarction: A UK Biobank cohort study,” Clin. Med. Insights Cardiol., vol. 16, pp. 1–6, 2022, doi: 10.1177/11795468221133611.

[13] C. Tarabanis, E. Kalampokis, M. Khalil, C. L. Alviar, L. A. Chinitz, and L. Jankelson, “Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction,” Cardiovascular Digit. Health J., vol. 4, no. 4, pp. 126–132,2023,doi: 10.1016/j.cvdhj.2023.06.001.

[14] J. Yang, Y. Li, X. Li, S. Tao, Y. Zhang, T. Chen, G. Xie, H. Xu, X. Gao, and Y. Yang,“A Machine Learning model for predicting in-hospital mortality in Chinese patients with ST-Segment Elevation Myocardial Infarction: Findings from the China Myocardial Infarction Registry,” J. Med Internet Res., Jul. 2024, doi: 10.2196/50067.

[15] N. G. Rezk, S. Alshathri, A. Sayed, E. E. Hem dan, and H. El-Behery, “XAI-augmented voting ensemble models for heart disease prediction: A SHAP and LIME-based approach,” Bioengineering, vol. 11, no. 10, 2024, doi: 10.3390/bioengineering11101016.

[16] Z. Sadeghi, R. Alizadehsani, M. A. CIFCI, S. Kausar, R. Rehman, P. Mahanta, P. K. Bora, A. Almasri, R. S. Alkhawaldeh, S.Hussain, B. Alatas, A. Shoeibi, H.Moosaei, M. Hladík, S. Nahavandi, and P. M. Pardalos, “A systematic review of explainable AI in healthcare: The role of SHAP in clinical model interpretation,”Comput. Elect. Eng., vol. 118, Part A, Aug. 2024, doi: 10.1016/j.compeleceng.2024.109370.

[17] A. Ghasemi, S. Hashtarkhani, D. L. Schwartz, and A. Shaban-Nejad, “Explainable artificial intelligence in breast cancer detection and risk prediction: A systematic scoping review,” Cancer Innov., vol. 3, no. 5, 2024, doi: 10.1002/cai2.136.

[18] M. Shukla, N. H. Dholakia, and H. Gupta, “Predicting cardiovascular risk with hybrid ensemble learning and explainable AI,” Sci. Rep., vol. 15, Art. no. 17927, Jan. 2025, doi: 10.1038/s41598-025-01650-7.

[19] D. Lapp, “Heart disease dataset,” [Online]. Available: https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset